• home
  • International
Experimental study of forced convective heat transfer of nanofluids in a microchannel
Year of publication 2012
Title of paper Experimental study of forced convective heat transfer of nanofluids in a microchannel
Authors Anoop, K., Sadr, R., Yu, J., Kang, S.-W., Jeon, S., and Banerjee, D.
Volume 39(9)
Pages 1325 - 1330
Journal International Communications in Heat and Mass Transfer
Link 관련링크 13회 연결
The forced convective heat transfer for flow ofwater and aqueous nanofluids (containing colloidal suspension of silica nanoparticles) inside a microchannel was studied experimentally for the constant wall temperature boundary condition. Applications of nanofluids have been explored in the literature for cooling of microdevices due to the anomalous enhancements in their thermo-physical properties as well as due to their lower susceptibility to clogging. The effect of flow rate on thermal performance of nanofluid is analyzed in this study. Variations of thermo-physical properties of the nanofluid sampleswere also measured. The experimental results show that heat transfer increases with flow rate for both water and nanofluid samples; however, for the nanofluid samples, heat transfer enhancements occur at lower flow rates and heat transfer degradation occurs at higher flow rates (compared to that of water). Electron microscopy of the heat-exchanging surface revealed that surface modification of the microchannel flow surface occurred due to nanoparticle precipitation from the nanofluid. Hence, the fouling of the microchannels by the nanofluid samples is believed to be responsible for the progressive degradation in the thermal performance, especially at higher flow rates. Hence, these results are observed to be consistent with previous experimental studies reported in the literature.